SLEEVE VS GASTRIC BYPASS FOR WEIGHT LOSS IN DIABETICS

Société Internationale de Chirurgie (SIC) Est. 1902

Michel Gagner, MD, FRCSC, FACS, FASMBS, FSSO

Westmount Square Surgical Center, Westmount, QC, Canada

Disclosures

- Stock ownership:
- Lexington medical,
- GT Metabolic

The Perfect Sleeve Gastrectomy

A Clinical Guide to Evaluation, Treatment, and Techniques

Michel Gagner Almino Ramos Cardoso Mariano Palermo Patrick Noel David Nocca Editors

🖄 Springer 🛛

EXTRAS ONLINE

Glycated Hemoglobin Levels during 2 Years of Follow-up.

Mingrone G et al. N Engl J Med 2012;366:1577-1585

5 years follow-up (Lancet Sept 2015)
Complete remission was 63% in BPD group vs. 37% in Gastric bypass group
(Overall 50% at 5 years)

Complications in med. Group (5) Myocardial infarction
Complications in gastric bypass (1)
Complications in BPD (0)

Lancet. 2015 Sep 5;386(9997):964-73.

Specifically, 10-year remission rates in the were:

5% for medical therapy

50% for BPD,

and 25% for RYGB

p=0.0082

Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Capristo E, Chamseddine G, Bornstein

Ten-year remission rates in insulin-treated type 2 diabetes after biliopancreatic diversion with duodenal switch

Jordanna E. Kapeluto, M.D., André Tchernof, Ph.D., Daiana Masckauchan, M.D., Simon Biron, M.D., Simon Marceau, M.D., Frédéric-Simon Hould, M.D., Stéfane Lebel, M.D., Odette Lescelleur, M.D., François Julien, M.D., Laurent Biertho, M.D. Surgery for Obesity and Related Diseases

DOI: 10.1016/j.soard.2020.06.052

ARTICLE IN PRESS				
		SURGERY FOR OBESITY AND RELATED DISEASES		
ELSEVIER	Surgery for Obesity and Related Diseases ■ (2020) 1–12			
	Original article			
Ten-year remission rates in insulin-treated type 2 diabetes after				
bili	opancreatic diversion with duodenal sw	vitch		
Jordanna E. Kapeluto, M.D. ^{a,b} , André Tchernof, Ph.D. ^{c,d} , Daiana Masckauchan, M.D. ^a , Simon Biron, M.D. ^a , Simon Marceau, M.D. ^a , Frédéric-Simon Hould, M.D. ^a , Stéfane Lebel, M.D. ^a , Odette Lescelleur, M.D. ^a , François Julien, M.D. ^a , Laurent Biertho, M.D. ^{a,*}				
^a Department of Surgery, Division of Bariatric and General Surgery, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Canada				
^b Division of Endocrinology, Department of Medicine, University of British Columbia, Vancouver, Canada ^c School of Nutrition, Laval University, Quebec City, Canada ^d Research Center, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Canada				
	Received 29 March 2020; accepted 27 June 2020			

Copyright © 2020 American Society for Bariatric Surgery Terms and Conditions

Fig. 2

Surgery for Obesity and Related Diseases DOI: (10.1016/j.soard.2020.06.052) Copyright © 2020 American Society for Bariatric Surgery <u>Terms and Conditions</u>

From: Effect of Laparoscopic Sleeve Gastrectomy vs Roux-en-Y Gastric Bypass on Weight Loss, Comorbidities, and Reflux at 10 Years in Adult Patients With Obesity: The SLEEVEPASS Randomized Clinical Trial

JAMA Surg. 2022;157(8):656-666. doi:10.1001/jamasurg.2022.2229

Figure Legend:

Long-term effect of LSG vs LRYGB on weight loss, comorbidities, and reflux in adults with obesity

Figure 2. Percentage Excess Weight Loss (%EWL) and Percentage Total Weight Loss (%TWL) for All Patients and Individual Patients After Laparoscopic Sleeve Gastrectomy (LSG) and Laparoscopic Roux-en-Y Gastric Bypass (LRYGB) From Baseline to 10 years

B %TWL after LSG and LRYGB from baseline to 10 y

	Time		LSG	LRYGB	P Valu
Fasting glucose,		Mean estimate	6.9	6.8	40
mmol/l ^{a,b}		(95% CI)	(6.6 to 7.3)	(6.4 to 7.1)	42
	Baseline	Mean estimate	7.0	7.3	
Glycated hemoglobin, % ^{a.c}		(95% CI)	(6.8 to 7.2)	(7.1 to 7.6)	
nemoglobin, %		No.	52	49	
	0.5 y	Mean estimate	6.4	6.3	
		(95% CI)	(6.2 to 6.6)	(6.1 to 6.5)	.26
	7	No.	50	43	
	1 y	Mean estimate	6.3	6.2	
		(95% CI)	(6.1 to 6.5)	(6.0 to 6.4)	.47
		No.	50	43	
	3 y	Mean estimate	6.4	6.5	
		(95% CI)	(6.1 to 6.6)	(6.2 to 6.7)	.57
	7	No.	46	43	
	5 y	Mean estimate	6.8	6.6	
		(95% CI)	(6.5 to 7.2)	(6.3 to 6.9)	.23
	1	No.	41	40	
	7 y	Mean estimate	6.8	6.8	
	1	(95% CI)	(6.4 to 7.2)	(6.4 to 7.2)	.99
	1	No.	39	39	
	10 y	Mean estimate	6.9	7.0	
	1	(95% CI)	(6.6 to 7.2)	(6.7 to 7.4)	.64
	1	No.	41	38	7
Glycemic status,	0.5 y	T2DM remission ^d	20/50 (40)	22/44 (50)	44
No./total (%)		No remission	30/50 (60)	22/44 (50)	41
	1 y	T2DM remission ^d	22/50 (44)	23/43 (53)	.41
		No remission	28/50 (56)	20/43 (47)	.41
	3 y	T2DM remission ^d	21/46 (46)	21/42 (50)	.83
		No remission	25/46 (54)	21/42 (50)	
	5 y	T2DM remission ^d	16/41 (39)	21/41 (51)	.37
	-	No remission	25/41 (61)	20/41 (49)	
	7 y	T2DM remission ^d	12/37 (32)	17/38 (45)	.35
	10 y	No remission	25/37 (68)	21/38 (55)	
		T2DM remission ^d	11/42 (26)	13/39 (33)	.63
		No remission	31/42 (74)	26/39 (67)	
Abbrevations: ANOVA, ana cholesterol; LSG, laparosc					poprotein
SI conversion factor: To co	nvert glucose va	alues to mg/dL, divide by (0.0555.		
Repeated-measurements o original scale. Results a				, and results are trans	sformed back
p=.07 for operation x time		42 for main effect of opera	ation and p<.001 for	main effect of time	
⁴ p=.02 for operation x time ⁴ The new consensus of Ar	nerican Diabete	s Association; a return of and that persists for at lea			

NS

From: Long-Term Outcomes of Medical Management vs Bariatric Surgery in Type 2 Diabetes

JAMA. 2024;331(8):654-664. doi:10.1001/jama.2024.0318

Figure Legend:

Assembly of the Trials in the Alliance of Randomized Trials of Medicine vs Metabolic Surgery in Type 2 Diabetes (ARMMS-T2D)^aThree participants who were lost to follow-up in the original trials were successfully rerecruited into ARMMS-T2D.⁸

eFigure 2. Comparison of per-protocol analysis and intention-to-treat analysis of HbA_{le} and weight change. A. HbA_{le} over time. B. Weight loss over time. The solid lines show the results of intention-to-treat (ITT) analysis, and the dashed lines show the results of the per-protocol (PP) analysis. The per-protocol analysis accounted for the crossovers from medical/lifestyle group to surgery using the inverse probability weighting approach. Least-squared means are plotted over time.

NS between Sleeve and Bypass

In the ITT analysis, weight loss at year 7 was 8.3% for the medical group and 19.9% for the surgical group, respectively. Using the PP analysis, weight loss at year 7 was 5.6% and 20.4% for the medical and surgical groups, respectively.

© 2024 American Medical Association. All rights reserved.

Nutritional	Definition of	Study				p-value ^a
Abnormality	Abnormality	Group	n	Nb	%	
		MED	11	87	12.6%	
		SURG	35	147	23.8%	0.04
Anemia	Hemoglobin <11.5 g/dL	RYGB	25	78	32.1%	0.003
	g/aL	SG	8	36	22.2%	0.18
		AGB	2	33	6.1%	0.30
		MED	15	88	17.0%	
		SURG	48	151	31.8%	0.01
Low Iron	Iron <59 µg/dL or <6.6 µmol/L	RYGB	30	81	37.0%	0.003
		SG	10	37	27.0%	0.20
		AGB	8	33	24.2%	0.37
		MED	8	88	9.1%	
		SURG	20	151	13.2%	0.34
Vitamin B12 deficiency	Vitamin B12 <230 pg/mL	RYGB	15	81	18.5%	0.07
renciency	Pg/IIIL	SG	4	37	10.8%	0.77
		AGB	1	33	3.0%	0.26
	Vitamin D2 (1,25 Dihydroxy) ≤20 ng/mL	MED	23	88	26.1%	
		SURG	35	151	23.2%	0.61
Vitamin D deficiency		RYGB	22	81	27.2%	0.88
leficiency		SG	2	37	5.4%	0.008
		AGB	11	33	33.3%	0.43
		MED	0	88	0	
		SURG	1	151	0.7%	0.44
Hypocalcemia	Calcium <8.4 mg/dL	RYGB	1	81	1.2%	0.30
		SG	0	37	0	NA
		AGB	0	33	0	NA
	PTH (intact) > 65	MED	29	88	33.0%	
		SURG	66	151	43.7%	0.10
Elevated PTH		RYGB	41	81	50.6%	0.02
	pg/mL	SG	12	37	32.4%	0.95
		AGB	13	33	39.4%	0.51
		MED	9	88	10.2%	
		SURG	23	151	15.2%	0.27
Hypoalbuminemia	Albumin <3.5 g/dL	RYGB	14	81	17.3%	0.18
		SG	5	37	13.5%	0.60
		AGB	4	33	12.1%	0.76
Severe	Albumin <2.8 g/dL	AGB MED	4	33 88	12.1%	0.76

eTable 3. Frequency of nutritional abnormalities in the bariatric surgery group, individual surgery subgroups, and medical group through 12 years

 hypoalbuminemia
 SURG
 0
 151
 0
 0.19

 a Compared to the medical/lifestyle group; b Number of participants with observed data. Abbreviations: MED, medical/lifestyle group; SURG, Bariatric surgery; RYGB, Roux-en-Y gastric bypass; SG, sleeve gastrectomy; AGB, adjustable gastric band

© 2024 American Medical Association. All rights reserved.

Long term mortality

ORIGINAL ARTICLE

Five-year Longitudinal Cohort Study of Reinterventions After Sleeve Gastrectomy and Roux-en-Y Gastric Bypass

Robert A. Li, MD, * Liyan Liu, MS, * David Arterburn, MD, † Karen J. Coleman, PhD, ‡ Anita P. Courcoulas, MD, § David Fisher, MD, † Sebastien Haneuse, PhD, ¶ Eric Johnson, PhD, † Mary Kay Theis, MS, † Tae K. Yoon, MS, ‡ Heidi Fisher, MD, ‡ James R. Fraser, BA, † and Lisa J. Herrinton, PhD*

FIGURE 1

Five-year Longitudinal Cohort Study of Reinterventions After Sleeve Gastrectomy and Roux-en-Y Gastric Bypass

Li, Robert A.; Liu, Liyan; Arterburn, David; Coleman, Karen J.; Courcoulas, Anita P.; Fisher, David; Haneuse, Sebastien; Johnson, Eric; Theis, Mary Kay; Yoon, Tae K.; Fisher, Heidi; Fraser, James R.; Herrinton, Lisa J.

Annals of Surgery273(4):758-765, April 2021. doi: 10.1097/SLA.000000000003401

Kaplan-Meier cumulative probability of any reintervention* at 5 years⁺. *Reinterventions, measured from the day of surgery, included total parenteral nutrition, endoscopic intervention, interventional radiology reinterventions, and surgical reinterventions. The surgical reinterventions included diagnostic laparoscopy or exploratory laparotomy, lysis of adhesions/ repair of internal hernia, cholecystectomy, repair of abdominal wall hernia, and other gastrointestinal/abdominal operations (including bariatric reoperative or revisional surgery). †The numbers at the bottom of the graph are the number of individuals still observed at that time point.

	Year 1		Yea	ar 3	Year 5	
	SG	RYGB	SG	RYGB	SG	RYGB
Number potentially eligible for follow-up at each time point	12,576	18,749	7483	16,113	1674	11,650
Complete follow-up, %	95.5%	95.2%	87.1%	86.5%	82.9%	78.7%
Zensored at disenrollment, %	4.3%	4.4%	12.3%	12.6%	15.7%	19.4%
Eensored on the death date, %	0.1%	0.4%	0.6%	0.9%	1.3%	1.9%
Reintervention ^{**}						
2 Total parenteral nutrition	87 (0.59)	$132 (0.68)^{\dagger}$	100 (0.72)	190 (1.04) [§]	101 (0.74)	233 (1.41)
5 Endoscopy	237 (1.68)	1040 (5.41)	380 (3.24)	1730 (9.73)	441 (4.96)	2153 (13.34)
Interventional radiology reintervention	155 (1.08)	270 (1.41)	257 (2.18)	565 (3.26)	305 (3.57)	757 (4.87)
surgical reintervention						
Laparoscopy/laparotomy	31 (0.21)	114 (0.60)	75 (0.68)	279 (1.63)	87 (1.02)	380 (2.50)
Lysis adhesions/repair internal hernia	42 (0.31)	121 (0.64)	99 (0.93)	332 (1.95)	129 (1.65)	410 (2.63)
Repair abdominal wall hernia	109 (0.81)	229 (1.23)	286 (2.67)	729 (4.30)	352 (4.36)	896 (5.74)
Cholecystectomy	283 (2.14)	324 (1.73) [‡]	626 (5.74)	768 (4.49)	710 (7.96)	969 (6.18)
Other gastrointestinal/abdominal	203 (1.44)	489 (2.56)	462 (4.29)	1122 (6.50)	574 (7.37)	1423 (9.08)
Any surgical reintervention	559 (4.13)	946 (5.00)	1260 (11.55)	2304 (13.39)	1453 (16.79)	2829 (17.84) [¶]
Any reintervention**	809 (5.89)	1885 (9.88)	1654 (14.88)	3725 (21.26)	1892 (21.26)	4550 (28.25)

TABLE 2. Number and Unadjusted Cumulative Incidence of Reinterventions at 1, 3, and 5 Years: Kaiser Permanente, 2005–2015*

JAMA Surgery | Original Investigation

Comparative Safety of Sleeve Gastrectomy and Gastric Bypass Up to 5 Years After Surgery in Patients With Severe Obesity

Ryan Howard, MD; Grace F. Chao, MD, MSc; Jie Yang, PhD; Jyothi Thumma, MPH; Karan Chhabra, MD, MSc; David E. Arterburn, MD, MPH; Andrew Ryan, PhD; Dana A. Telem, MD, MPH; Justin B. Dimick, MD, MPH

IMPORTANCE Sleeve gastrectomy is the most widely used bariatric operation; however, its long-term safety is largely unknown.

OBJECTIVE To compare the risk of mortality, complications, reintervention, and health care use 5 years after sleeve gastrectomy and gastric bypass.

DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study included adult patients in a national Medicare claims database who underwent sleeve gastrectomy or gastric bypass from January 1, 2012, to December 31, 2018. Instrumental variables survival analysis was used to estimate the cumulative incidence of outcomes up to 5 years after surgery.

EXPOSURES Laparoscopic sleeve gastrectomy and laparoscopic Roux-en-Y gastric bypass.

MAIN OUTCOMES AND MEASURES The main outcome was risk of mortality, complications, and reinterventions up to 5 years after surgery. Secondary outcomes were health care use after surgery, including hospitalization, emergency department (ED) use, and total spending.

From: Comparative Safety of Sleeve Gastrectomy and Gastric Bypass Up to 5 Years After Surgery in Patients With Severe Obesity

JAMA Surg. 2021;156(12):1160-1169. doi:10.1001/jamasurg.2021.4981

la	ole	Titl	e:

Cohort Characteristics

Copyright 2021 American Medical Association. All Rights Reserved.

No. (%) Gastric bypass Sleeve gastrectomy Characteristic (n = 38 402) (n = 57 003) 57.1 (11.8) Age, mean (SD), y 55.9 (11.7) 29 050 (75.7) 42 299 (74.2) Women Men 9352 (24.4) 14704 (25.8) Race 124 (0.2) Asian 109 (0.3) 6038 (15.7) Black 10101(17.7) 278 (0.7) North American Native 314 (0.6) White 29986 (78.1) 43 194 (75.8) Other 373 (1.0) 534 (0.9) Unknown 404 (1.1) 785 (1.4) Ethnicity Hispanic 1215 (3.2) 1951 (3.4) Year of operation 2012 8417 (21.9) 519 (0.9) 2013 6593 (17.2) 6727 (11.8) 2014 5672 (14.8) 8904 (15.6) 2015 5100 (13.3) 10102(17.7) 2016 4493 (11.7) 10407 (18.3) 2017 4267 (11.1) 10831 (19.0) 2018 3861 (10.1) 9513 (16.7) Comorbidities Hypertension 29 513 (76.9) 43253 (75.9) Diabetes without chronic 17 094 (44.5) 20745 (36.4) complications Depression 11 562 (30.1) 14861 (26.1) Chronic pulmonary disease 10 914 (28.4) 15062 (26.4) Hypothyroidism 6895 (18.0) 10364 (18.2) Liver disease 5691 (14.8) 7424 (13.0) Diabetes with chronic 4182 (10.9) 5212 (9.1) complications 3013 (7.9) 3619 (6.4) Psychoses Deficiency anemias 2435 (6.3) 3293 (5.8) Fluid and electrolyte 2395 (6.2) 2923 (5.1) disorders Congestive heart failure 2338 (6.1) 3736 (6.6) 2308 (6.0) 3428 (6.0) Kidney failure Other neurologic disorders 2145 (5.6) 3114 (5.5) Rheumatoid 1495 (3.9) 2596 (4.6) arthritis/collagen vascular disease Peripheral vascular disease 698 (1.8) 919 (1.6) 477 (1.2) 409 (0.7) Pulmonary circulation disease Valvular disease 683 (1.8) 1113 (2.0) 354 (0.9) 497 (0.9) Coagulopathy Weight loss 162 (0.4) 140 (0.3) Paralysis 195 (0.5) 337 (0.6) Solid tumor without 93 (0.2) 162 (0.3) metastasis Chronic blood loss anemia 69 (0.1) 76 (0.2) 39 (0.1) Lymphoma 76 (0.1)

43 (0.1)

85 (0.2)

Table 1. Cohort Characteristics

AIDS

Cumulative Incidence of Mortality, Complication, All-Cause Hospitalization, and All-Cause Emergency Department Use Comparing Sleeve Gastrectomy and Gastric Bypass

Figure 2.

Cumulative Incidence of Reintervention, Reoperation, Revision, and Enteral Access Comparing Sleeve Gastrectomy and Gastric Bypass

Ann Surg 277(6): p 979-87. June 2023

Comparative Safety of Sleeve Gastrectomy and Gastric Bypass up to 5 Years After Surgery in Patients With Medicaid

Ryan Howard, MD, MS,*†⊠ Jie Yang, PhD,† Jyothi Thumma, MPH,† Anne Ehlers, MD, MPH,*† Sean O'Neill, MD, PhD,*† David Arterburn, MD, MPH,‡ Andrew Ryan, PhD,†§∥ Dana Telem, MD, MPH,*†¶ and Justin B. Dimick, MD, MPH*†¶

- 132,788 patient Medicaid
- 84,717 Sleeve Gastrectomy (64%)
- 48,071 Gastric bypass
- After 5 years. MORTALITY
- 1.29% Sleeve

Downloaded from http://jo SZNqR2P/nkqO6b0vhOOEjztv

- 2.15% Gastric bypass
- More complications, reoperations, ED visits, rehospitalizations

Diabetes Care Volume 45, September 2022

Long-term Survival After Sleeve Gastrectomy Versus Gastric Bypass in a Binational Cohort Study

Diabetes Care 2022;45:1981–1986 | https://doi.org/10.2337/dc22-0485

Dag Holmberg,¹ Giola Santoni,¹ Joonas H. Kauppila,^{1,2} Sheraz R. Markar,^{1,3} and Jesper Lagergren^{1,4}

1981

From: Long-term Survival After Sleeve Gastrectomy Versus Gastric Bypass in a Binational Cohort Study

Diabetes Care. 2022;45(9):1981-1986. doi:10.2337/dc22-0485

Figure Legend:

Distribution of primary laparoscopic sleeve gastrectomy (SG) and primary laparoscopic gastric bypass (GBP) by country over the study period.

Table 1—Characteristics of 61,503 patients operated on with primary laparoscopic sleeve gastrectomy or primary laparoscopic gastric bypass in 2007–2019 in Sweden or Finland

	Sleeve gastrectomy	Gastric bypass
Total	9,612 (15.6)	51,891 (84.4)
Follow-up, years Person-years	3.7 (2.2–5.3) 38,235 (9.2)	7.7 (5.0–9.7) 377,477 (90.8)
Sex Male Female	2,276 (23.7) 7,336 (76.3)	12,874 (24.8) 39,017 (75.2)
Age, years	43 (34–51)	42 (34–50)
Obesity-related comorbidities Diabetes Hypertension Charlson comorbidity index score*	1,486 (15.5) 3,060 (31.8)	9,117 (17.6) 17,292 (33.3)
0 ≥1	6,950 (72.3) 2,662 (27.7)	36,285 (69.9) 15,606 (30.1)
Country Sweden Finland	7,928 (82.5) 1,684 (17.5)	44,851 (86.4) 7,040 (13.6)
Calendar year, median	2017	2013
Mortality All-cause Cardiovascular-specific Cancer-specific	122 (1.3) 43 (0.5) 35 (0.4)	1,449 (2.8) 481 (0.9) 277 (0.5)

Data are presented as median (interquartile range), as n (%), or as indicated otherwise. *Not including diabetes or hypertension.

DOI: 10.1002/oby.23646

Epidemiology/Genetics

Long-term all-cause and cause-specific mortality for four bariatric surgery procedures

Ted D. Adams^{1,2,3} | Huong Meeks⁴ | Alison Fraser⁴ | Lance E. Davidson^{2,5} | John Holmen⁶ | Michael Newman⁷ | Anna R. Ibele⁸ | Nathan Richards¹ | Steven C. Hunt^{2,9} | Jaewhan Kim¹⁰

MORTALITY OUTCOMES AFTER BARIATRIC SURGERY

Primary Cause of Death Only

All causes of death

Hazard Ratio, 95% CI

2.0

3.0

4.0

5.0

6.0

7.0

1.0

0.0

All causes of death	HR (95% CI), # D	eaths (S,N)
RYGB	0.85 (0.79-0.91)	N=2658,2837
Banding	0.72 (0.55-0.94)	N=154, 200
Sleeve	0.49 (0.30-0.79)	N=70,95
Duodenal Switch	1.26 (0.69-2.28)	N=61,49
Non-external causes	of death	
RYGB	0.74 (0.69-0.80)	N=2171,2530
Banding	0.71 (0.53-0.94)	N=136, 182
Sleeve	0.42 (0.25-0.73)	N=58,87
Duodenal Switch	1.25 (0.69-2.28)	N=57,47
Malignant neoplasm	1S	
RYGB	0.58 (0.48-0.69)	N=349, 502
Banding	0.72 (0.38-1.34)	N=34,48
Sleeve	0.10 (0.01-1.01)	N=12,21
Duodenal Switch	- N=<11,<11	
Major Cardiovascula	ar Diseases	
RYGB	0.69 (0.59-0.81)	N=576, 649
Banding	1.06 (0.58-1.94)	N=46,46
Sleeve	0.25 (0.06-1.01)	N=13,18
Duodenal Switch	0.73 (0.06-8.87)	N=11,15
Diabetes mellitus		
RYGB	0.25 (0.19-0.31)	N=166, 562
Banding	0.51 (0.22-1.19)	N=26,39
Sleeve	0.03 (0.01-0.16)	N=13,18
Duodenal Switch	- N=<11,<11	
External causes of d	eath	
RYGB	2.58 (2.01-3.30)	N=347, 129
Banding	0.94 (0.33-2.70)	N=16,16
Sleeve	- N=12,<11	
Duodenal Switch	- N=<11,<11	

Small weight loss differences

Non-significant differences in diabetes resolutions

Long-term mortality is lower with SLEEVE GASTRECTOMY than with gastric bypass

Despite higher revision rates with Sleeve Gastrectomy

Sleeve Gastrectomy can be revised to SADI-S for better weight loss and diabetes resolution