Surgical Outcomes, Choice of Procedure or Something Else

Prof. Francesco Rubino Chair Bariatric and Metabolic Surgery King's College London Consultant (Hon) Surgeon King's College Hospital

Disclosures

Research/Educational Grants: Novo Nordisk, Ethicon, Medtronic

Consulting/SAB: Morphic Medical, GT ,Metabolic Solutions, Keyron

Speaking Honoraria: Medtronic, Ethicon, Novo Nordisk, Lilly

Others: President, Metabolic Health Institute (nonprofit)

Potential of Surgery for Curing Type 2 Diabetes Mellitus

Francesco Rubino, MD,* and Michel Gagner, MD, FACS, FRCSC†

From the "IRCAD-Eu Sinai Medical Center, Feature

Effect of Duodenal–Jejunal Exclusion in a Non-obese Animal Model of Type 2 Diabetes A New Perspective for an Old Disease

Francesco Rubino, MD, and Jacques Marescaux, MD, FRCS

Background: The Roux-en-Y gastric bypass and the biliopar diversion effectively induce weight loss and long-term cor type 2 diabetes in morbidly obese individuals. It is unknown v the control of diabetes is a secondary outcome from the treat

Is Type 2 Diabetes an Operable Intestinal Disease?

A provocative yet reasonable hypothesis

FRANCESCO RURINO, MD

TYPE 2 DIABETES: IS IT AN INTESTINAL DISEASE? — The rapid resolution of diabetes after Roux-

Potential of Surgery for Curing Type 2 Diabetes Mellitus

Francesco Rubino, MD,* and Michel Gagner, MD, FACS, FRCSC+

From the *IRCAD-European Institute of Telesurgery, Strasbourg, France, and the †Division of Laparoscopic Surgery, Mount Sinai Medical Center, New York, New York

"A surgical Cure of Diabetes?"

..."Rubino's idea boils down to one impolite word used to refer to the excrement of cows"...."BS"

Leslie Stahl: Can Surgery Cure Diabetes? Yes/No

FR: ...I can't answer the question as a yes or noLS: You only have yes and no for an answerFR: ...I should say no then....

42yo F- Type 2-Diabetes > 8-year disease duration

Preop Medications: <u>Insulin</u> + Liraglutide + Metformin Preop HbA1c 9.1

10-year Remission of Diabetes

PP analysis,

• Surgery (Total) : **37.5%**

• MT: 0

BPD (50%; CI: 30.0; 70.1), RYGB (25%; CI: 11.2; 46.9) (P=0.19, Fisher exact test between surgical procedures)

Weight Loss and Diabetes

Weight changes did not predict diabetes remission or relapse among surgical patients.

Weight regain at 10-year:

- Pts with Remission: 7.05<u>+</u>6.89%
- Pts with Relapse: 8.21+6.15%
 (P= NS)

Supporting weight-independent mechanisms of GI bypass procedures

"Given its role in metabolic regulation, the GI tract constitutes a clinically and biologically meaningful target for the management of T2D." DSS-II⁽²⁾

Outcomes of Surgical Treatment in pts with T2D

Durable Remission (>10Yr) "Cure" of T2D

Use of diabetes medication (> 60% reduction within 3 months)

Greater Reduction All Cause-Mortality (60% vs 30% reduction T2D vs no T2D)

Association of metabolic-bariatric surgery with long-term survival in adults with and without diabetes

<u>Greater Cost-effectiveness</u> (greater magnitude of cost-reduction)

RCTs of Surgery vs. Meds/Lifestyle Care for T2DM

Rubino F et al Diabetes Care (June 2016)

Indications for Surgical Treatment

"There is now sufficient clinical and mechanistic evidence to support inclusion of metabolic surgery among antidiabetes interventions for people with T2D and obesity." DSS-II⁽²⁾

THE LANCET

Volume 397 - Number 10 271 - Pages 253-346 - January 23-29, 2021

www.thelancet.com

"Metabolic surgery is more effective than conventional medical therapy in the long-term control of type 2 diabetes."

See Articles page 293

Editorial	Articles	Articles	Seminar	Review
COVID-19: the intersection of education and health See page 253	Adavosertib plus gemeitabine for recurrent ovarian carcer Swipep 201	Ritusimab versus toci ¥zumab in rheumatoid arthritis Seepige 345	Male infertility Second 110	Acute flaccid myelitis Sergior 134

"Why surgery is the next big thing for Type 2 Diabetes"

Nature (cover page) 26 May 26, 2016

"Surgery should be an option for diabetics"

time.com/4345470/gastric-bypass-surgery-diabetes/

TIME

"One of the most significant changes in treating diabetes since the discovery of insulin in 1921"

"Metabolic Surgery for Type 2 Diabetes: Changing the Landscape of Diabetes Care"

New Scientist, 28 May, 2016

NewScientist

nature

Diabetes Care 2016 Jun; 39 (6): 857-860

Diabetes Care

£5.00 Registered as a newspaper - ISSN 0140-6736 Founded 1823 - Published ueskly

"What is most effective treatment today for type 2 diabetes?"

Institute

Most People Prefer Lifestyle Interventions or Medications as a Treatment of Type 2 Diabetes

Which one of the following interventions would be best for someone like you as a treatment for Type 2 diabetes? (Select one.)

Bariatric/Metabolic Surgery Continues to be Seen as "Too Risky"

Do you agree or disagree with the following statement? "Weight loss surgery (also known as bariatric or metabolic surgery) is too risky."

■ US Adults 18+ with Self-Reported Weights and Heights Resulting in BMIs of 30 and Greater

SAFETY PROFILE AND HEALTHCARE USAGE OF BARIATRIC-METABOLIC SURGERY COMPARED TO COMMONLY PERFORMED ELECTIVE PROCEDURES

G. Chamseddine, R. McIntyre, S. Panagiotopoulos, A. Assiri, J. Crane, F Rubino

Safety of Bariatric Surgery Compares Favorably with Other Elective Surgery

30-Day Post-Operative Safety Outcomes (Data from NHS Digital)

		Bariatric	Adrenal	GEJ	Colorectal	Inpatient Cholecystectomy	Lap Hernia	Neck	Outpatient Cholecystectomy
Morbidity	Major morbidity (%)	0	1	8 **	6 *	2	1	1	1
	Reoperation rate (%)	0	0	3	4	1	1	1	1
Readmission rate	All causes (%)	7	26 *	13	21 *	10	7	8	8
Readmission rate	Procedure-related (%)	4	14 *	7	15 *	7	3	2	5
Readmissions	All causes (days)	0.3 ± 0.4	1.1 ± 1.0	1.9 ± 1.0 **	2.6 ± 1.9**	1.9 ± 1.1 **	1.8 ± 2.5	5.1 ± 2.3 **	1.1 ± 1.1
Length of stay	Procedure-related	1.0 ± 1.2	1.0 ± 0.9	2.4 ± 1.5	3.6 ± 2.6	2.4 ± 1.2	1.0 ± 0.8	3.7 ± 3.8	1.7 ± 1.8
	(uays)								
Total cost for all re- dmsisions	All causes (£)	10,067	64,651	25,624	51,186	16,599	16,212	40,618	12,954
	Procedure-related (£)	9,405	39,345	15,980	41,027	14,142	10,532	2,180	6,681
Cost per re-admission	All causes (£)	719 ± 734	1,658± 351**	1,602 ± 657**	1,765 ± 523**	1,037 ± 256**	$\begin{array}{r}1,\!474\pm\\664*\end{array}$	2,389 ± 664**	1,295 ± 504*
	Procedure-related (£)	2,351 ± 2,236	$\begin{array}{r}1,\!874\pm\\570\end{array}$	$1,776\pm968$	2,051 ± 703	$1,088 \pm 312$	1,505 ± 593	1,090 ± 6,772	$1,114\pm706$

Mean Data are represented as means \pm 95% confidence intervals. **denotes different from bariatric surgery, P < 0.01; *denotes different from bariatric surgery, P < 0.05.

Submitted, under peer-review

Overall Readmissions Over 5-Year

Neck

£1,288

Bariatric

1.5

Choosing the Procedure for T2D

10-year Remission of Diabetes

Medications Usage (Diabetes)

Proportion (%)

Early and Late Surgical Complications

	BPD group			RYGB group			Medical therapy group					
	0–2 years	2–5 years	5–10 years	10-year total	0–2 years	2–5 years	5–10 years	10-year total	0–2 years	2–5 years	5–10 years	10-year total
Major 30-day postoperative co	omplications	5										
Deep vein thrombosis or pulmonary embolism	1	0	0	1	1	0	0	1	0	0	0	0
Atrial fibrillation episode	1	0	0	1	0	0	0	0	0	0	0	0
Late surgical complications												
Intestinal occlusion	0	0	0	0	1	0	0	1	0	0	0	0
Incisional hernia	1	0	0	1	0	0	0	0	0	0	0	0
Recurrent or chronic diarrhoea	12	10	8	30	0	0	0	0	0	0	0	0
Nutritional or metabolic comp	lications											
Iron-deficiency anaemia	0	5	3	8	0	3	2	5	0	0	0	0
Hypoalbuminaemia, plasma albumin <3·5 mg/dL	0	3	2	5	0	0	0	0	0	0	0	0
Osteopenia*	0	3	3	6	0	1	1	2	0	1	2	0
Osteoporosis†	0	1	2	3	0	0	0	0	0	0	0	0
Transient nyctalopia	0	1	2	3	0	0	0	0	0	0	0	0
Renal calculus	0	2	1	3	0	0	0	0	0	0	0	0
Symptomatic hypoglycaemia‡	0	0	0	0	0	2§	0	2	0	0	0	0

Stampede Trial SG vs RYGB @ 36 months

C Diabetes Medications

RYGB results in greater reduction of CV medications compared to sleeve gastrectomy

CV medications – number (%)	Medical Therapy (n=40)	Bypass (n=48)	Sleeve (n=49)			
Baseline						
None	0 (0)	3 (6.3)	2 (4.1)			
1 - 2	19 (47.5)	17 (35.4)	28 (57.1)			
<u>></u> 3	21 (52.5)	28 (58.3)	19 (38.8)			
Month 36						
None	1 (2.5)	33 (68.8) *	21 (42.9) *			
1 - 2	18 (45)	14 (29.2)	25 (51)			
<u>></u> 3	21 (52.5)	1 (2.1)	3 (6.1)			

Stampede Trial; NEJM, March 2014

JAMA Surgery | Original Investigation

Comparing the 5-Year Diabetes Outcomes of Sleeve Gastrectomy and Gastric Bypass The National Patient-Centered Clinical Research Network (PCORNet) Bariatric Study

Kathleen M. McTigue, MD; Robert Wellman, MS; Elizabeth Nauman, MPH, PhD; Jane Anau, BS; R. Yates Coley, PhD; Alberto Odor, MD; Julie Tice, MS; Karen J. Coleman, PhD; Anita Courcoulas, MD; Roy E. Pardee, JD; Sengwee Toh, ScD; Cheri D. Janning, MS; Neely Williams, MDiv; Andrea Cook, PhD; Jessica L. Sturtevant, MS; Casie Horgan, MPH; David Arterburn, MD; for the PCORnet Bariatric Study Collaborative

cohort study in 34 US health system sites

9710 Adult patients with T2DM who had bariatric surgery between January 1, 2005, and September 30, 2015,

Shaded areas represent 95% pointwise CIs for procedure-specific changes in hemoglobin A_{1c} levels. RYGB indicates Roux-en-Y gastric bypass; SG, sleeve gastrectomy.

Roux-en-Y gastric associated with

- 10% higher T2DM remission rates
- better glycaemic control
- fewer T2DM relapse events

RCT Surgery vs MT for T2DM

Surgery more effective than MT

Gradient BPD > RYGB > Sleeve

Efficacy for BMI above and below 35kg/m2

Rubino F et al Diabetes Care (June 2016)

Examples of operated cases

46 yo male; T2D - BMI: 47Kg/m^{2P}

Poorly Controlled T2D on insulin Interstitial Lung Disease (ILD) requiring Lung <u>transplant</u> – but patient <u>ineligible</u> due to excess weight & diabetes

- **Breathless on minimal exertion**
- Resting Spo2 on air is 91%, 70% on mild exertion
- Requires Continuous oxygen on activity at 10L/min
- Estimated complication rates of ILD surgery (26% for lung and 11% nonlung surgery)

• Laparoscopic Sleeve Gastrectomy

- Operative time: 65 min
- Extubated at end of Procedure. 24-hour HDU Level 2 bed
- Total Length of Stay: 4 days
- No postoperative complications

2.5 years Postoperatively

Weight: 84 Kg, BMI: 27.1 Kg/m²

Weight loss<mark>: 62Kg, <mark>(42%</mark> TWL)</mark>

Diabetes in remission

OFF CPAP,

No oxygen at rest

No longer indication to lung transplant

LAPAROSCOPIC SLEEVE POST LIVER TRANSPLANT

- T2D on insulin
- Liver Transplant
- NASH on graft
- Massive ventral hernia
- Hypertension
- Dyslipidemia

Metabolic Surgery Changes the Landscape of Diabetes Care

Diabetes Care Volume 39, June 2016

857

Metabolic Surgery for Type 2 Diabetes: Changing the Landscape of Diabetes Care

William T. Cefalu,¹ Francesco David E. Cummings³

Diabetes Care 2016;39:857-860 | DOI: 10.2337/dc16-0686

The accelerating pandemic of diabetes is recognized as one of the greatest global public health threats of our time (1). When one reviews the latest estimates for diabetes prevalence and projections worldwide, it is easy to appreciate the magni-

Surgery can be an effective treatment for type 2 diabetes.

Time to think differently about diabetes

New guidelines for the surgical treatment of type 2 diabetes bolster hopes of finding a cure, writes **Francesco Rubino**, but long-standing preconceptions must be put aside.

How Does Diabetes Change the Landscape of Surgery?

Audit Personal Practice @ King's

Α

Surgical Candidates With vs Without T2D

Audit Personal Practice @King's

Diabetes Status

Clinical Characteristics	All patients n = 723	Diabetes n = 301 (41.6%)	No Diabetes n = 422 (58.4%)	p -value
Age (years)	47 ± 12	51±11	45 ± 12	0.001 م
Gender, female (%)	518 (71.6%)	192 (63.8)	326 (77.3)	<i>p</i> <0.001
BMI (kg/m ²)	48±8	47 ± 8	49±8	p <0.001
CCI score	1.6 ± 1.6	2.5 ± 1.7	0.8 ± 1.1	p <0.001
Estimated 10-year survival (%)	93.0	85.0	96.5	p<0.001
ASA score	2.6 ± 0.5	2.7 ± 0.5	2.5 ± 0.6	p<0.001
Number of comorbidities	3.8±2.3	4.9 ± 2.1	3.0 ± 2.1	p <0.001
Number of medications	1.7 ± 2.1	3.3 ± 2.1	0.6 ± 1.0	p <0.001
BIVII ≥ 50 (%)	270(37.3%)	102 (33.9)	167 (39.8)	p =0.105
CVD (%)	117 (16.2%)	68 (22.6)	49 (11.6)	p <0.001

Continuous data are presented as mean ± SD and anlaysed by two-sided T-test. Categorical data are presented as count (%) and analysed by Pearson's Chi-Square test. CVD, Cardiovascular Disease; CCI, Charlson Comorbidity Index; ASA, American Society of Anaesthesiologists.

Audit Personal Practice (unpublished)

Metabolic Surgery at KCH

Diseases and Conditions in Pts Undergoing Bariatric/Metabolic Surgery at KCH

- Type 2 Diabetes
- Coronary Heart Disease
- Heart Failure
- NASH
- Chronic Kidney Disease
- Respiratory disease (OSA, Hypoventilation Syndrome)
- Patients awaiting other time-sensitive surgery (i.e. transplants, CABG, orthopedic surgery)
- Pre- or Post-Liver Transplant

30-day major morbidity

Anaesthetic Pre-Assessment Form

Anaesthetic History / Airway	Problems with previous anaesthetics	Yes		
	Mallampati	2		
Allergies / Meds / Surgical History	Allergies to medication / food / latex etc	Yes		
Review of Systems	Stairs without stopping	less than 1 flight		
	Hypertension	Yes		
	Chest pain / Angina	Yes		
	MI	Yes		
Charlson Comorbidity Index	CHF / Cardiomyopathy	Yes		
(CCI) Score = 7 points	OSA / Symptoms	Yes		
	Renal Impairment	Yes		
	Diabetes	Yes		
	Anaemia	Yes		
>>Estimated 10-year survival	Anticoagulation	Yes		
= 0 %	Cerebrovascular disease	Yes		
	Joint replacement or orthopaedic metalware	Yes		
	Anxiety / depression / mental illness	Yes		
	Any other relevant medical conditions	Yes		

Prognosis (estimated 10-year survival based on CCI-Score)

CCI Score of Patients on Waiting List for Bariatric Surgery at KCH

About 4 in 10 patients on WL have high mortality risk from their disease status (average 10-year survival 36%)

10-year survival rates for cancer (Public Health England 2019)

TRADITIONAL "BARIATRIC" (WEIGHT-LOSS) SURGERY

BMI

Cost-effectiveness/saving

YEARS/DECADES

METABOLIC SURGERY

Cost-effectiveness/saving

MONTHS/YEARS

From Bariatric to Metabolic Surgery: = "Prophylactic" vs "Therapeutic" Intervention

Lancet Commission on Clinical Obesity (coming up soon) Reframing Obesity to Improve Care and Policy

