Post-operative Biochemistry Surveillance: Is There More to Know?

Authors:

Hafsa Younus Katarina Burton Naiara Fernandez-Munoz

Emilane Lacea Melisa Ilkgoren Chetan Parmar Pratik Sufi

IFSO, Naples 2023

BACKGROUND

- One Anastomosis Gastric Bypass (OAGB)
- Sleeve Gastrectomy (SG)
- Roux-en-Y Gastric Bypass (RYGB)

Preoperatively deficiencies are corrected

Post-operatively, we monitor patient's biochemistry at three, six, twelve, eighteen and twenty-four months

AIM

- Our intention was to look at postoperative biochemistry for the duration of our customary two-year follow up period.
- To assess, whether we are over testing or over treating our patients.

METHODS

- Retrospective biochemistry review of the 2018 2019 cohort.
- Calculated percentages of patients with deficiencies requiring supplementation.
- Compared nutritional effects of different interventions by measuring relative risk at different follow up intervals.

Total Number of Bariatric surgeries: n = 222

OAGB Patients, n=83 (37.4%)

SG Patients, n=83 (37.4%)

RYGB Patients, n=56 (25.2%)

Zinc

- Hair loss
- Pica
- Taste changes
- Erectile dysfunction
- Night blindness
- Dermatitis

Attention in vegetarian and vegan patients

- Zinc levels were found to be significantly low in our studied cohort (requiring additional supplementation)
- Significant difference was found between Interventions at different time intervals

	Post-operative Biochemistry Monitoring Period				
Total Bariatric surgeries, n = 222	3 months	6 months	12 months	18 months	24 months
OAGB Patients, n=83 (37.4%)					
Number of patients with Zn ≤ 10	9	10	22	11	4
Lowest Zn value found per period	8.3	7.9	6.5	6.9	8
OAGB attended blood tests per period	44 (53%)	44 (53%)	52 (62%)	39 (47%)	21 (25%)
Percent of attendees with Zn ≤ 10	20%	23%	42%	28%	19%
SG Patients, n=83 (37.4%)					
Number of patinets with Zn ≤ 10	4	9	14	4	1
Lowest Zn value found per period	9	8.2	7.9	7.3	10
SG attended blood tests per period	48 (57%)	53 (64%)	49 (59%)	28 (34%)	8 (10%)
Percent of attendees with Zn ≤ 10	8.0%	17%	29%	14%	12%
RYGB Patients, n=56 (25.2%)					
Number of patients with Zinc ≤ 10	5	5	7	8	3
Lowest Zn value found per period	8.6	8.2	7.3	3.8	8.8
RYGB attended blood tests per period	47 (84%)	37 (66%)	19 (33%)	16 (29%)	13 (23%)
Percent of attendees with Zn ≤ 10	11%	14%	37%	50%	23%

Chi Square: p<0.018

Zinc: Subgroup Analysis

Relative Risk at 3 Months	Relative Risk at 6 Months	Relative Risk at 12 Months	Relative Risk at 18 Months	Relative Risk at 24 Months
OAGB/Sleeve = 0.22/0.08= 2.5	OAGB/Sleeve = 0.23/0.17= 1.35		RYGB/sleeve = 0.50/0.14= 3.57	RYGB/sleeve = 0.23/0.12= 1.91
OAGB /RYGB= 0.20/0.11= 1.88	OAGB/RYGB= 0.23/0.14=1.64		RYGB/OAGB= 0.50/0.28= 1.78	RYGB/OAGB= 0.23/0.19= 1.21

Copper

Deficiency may be caused by excess zinc intake, malabsorption and GI losses

Signs and symptoms of deficiency:

- Immune system impairment
- Bone demineralisation.

Attention in vegetarian and vegan patients

- Risk of copper deficiency is very low
- Rather high copper levels were found in our cohort
- No Significant Difference between interventions (p value = 0.26)
- This could be due to low zinc levels in our cohort (commonest cause reported in literature)
- Can be treated by giving patients Zinc (prevents copper from accumulating in liver and GI tract)

	Post-operative Biochemistry Monitoring Period				
Total Bariatric surgeries, n = 222	3 months	6 months	12 months	18 months	24 months
OAGB Patients, n=83 (37.4%)					
Number of patients with CU > 22	8	5	5	2	2
Number of patients with CU < 11	0	0	0	1	1
Highest CU value found per period	27.2	36.4	28.7	27.2	24.7
Lowest CU value found per period	n/a	n/a	n/a	10.1	9.3
OAGB attended blood tests per period	44 (53%)	44 (53%)	52 (62%)	39 (47%)	21 (25%)
Percent of attendees with CU > 22	18%	11%	10%	5%	9%
Percent of attendees with CU < 11	0%	0%	0%	3%	4%
SG Patients, n=83 (37.4%)					
Number of patients with CU > 22	15	13	9	9	3
Number of patients with CU < 11	1	2	1	1	0
Highest CU value found per period	36.4	40.5	26.2	29.8	28.3
Lowest CU value found per period	9.9	9.7	9.4	9.1	n/a
SG attended blood tests per period	48 (57%)	53 (64%)	48 (58%)	28 (34%)	8 (10%)
Percent of attendees with CU > 22	31%	25%	19%	32%	37%
Percent of attendees with CU < 11	2.0%	4%	2%	4%	0%
RYGB Patients, n=56 (25.2%)					
Number of patients with CU > 22	11	7	2	3	2
Number of patients with CU < 11	0	0	1	0	0
Highest CU value found per period	27.5	25.1	27.5	36.7	25.9
Lowest CU value found per period	N/A	N/A	10.5	N/A	N/A
RYGB attended blood tests per period	47 (84%)	37 (66%)	19 (33%)	16 (29%)	13 (23%)
Percent of attendees with CU > 22	23%	19%	11%	19%	15%
Percent of attendees with CU < 11	0%	0%	5%	0%	0%

B12

- Numbness
- Tingling
- Difficulty walking
- Memory loss

Who is at risk of deficiency

- Bariatric patients
- PPI use
- Chronic inflammation: IBD, celiac
- ETOH use

Vegetarians & vegans at increased risk

- Our studied cohort showed, high B12 levels across interventions and no significant difference between groups was found. (p:0.6)
- Excess B12 is excreted by body and does not have any serious implications.
- Most common cause of raised B12 level in general population is recent B12 injection.

		5.			
	Post-operative Biochemistry Monitoring Period				
Total Bariatric surgeries, n = 222	3 months	6 months	12 months	18 months	24 months
OAGB Patients, n=83 (37.4%)					
Number of patients with low B12	0	0	1	1	0
Lowest B12 value found per period	n/a	n/a	186	150	n/a
Number of patients with high B12	6	7	19	19	10
Highest B12 value found per period	896	1887	1895	1712	1857
Blood tests attended per period	27 (33%)	23 (28%)	38 (46%)	35 (42%)	19 (23%)
Percent of attendees with low B12	0%	0%	3%	3%	0%
Percent of attendees with high B12	22%	30%	50%	54%	52%
SG Patients, n=83 (37.4%)					
Number of patients with low B12	0	0	0	0	0
Lowest B12 value found per period	n/a	n/a	n/a	n/a	n/a
Number of patients with high B12	13	12	22	11	4
Higest B12 value found per period	1616	1876	1795	1683	1736
Blood tests attended per period	41 (49%)	40 (48%)	42 (51%)	24 (29%)	7 (8%)
Percent of attendees with low B12	0%	0%	0%	0%	0%
Percent of attendees with high B12	32.0%	30%	52%	46%	57%
RYGB Patients, n=56 (25.2%)					
Number of patients with low B12	0	0	0	0	0
Lowest B12 value found per period	n/a	n/a	n/a	n/a	n/a
Number of patients with high B12	8	9	3	6	3
Higest B12 value found per period	1558	1755	863	1570	915
Blood tests attended per period	34 (61%)	26 (46%)	11 (20%)	15 (27%)	12 (21%)
Percent of attendees with low B12	0%	0%	0%	0%	0%
Percent of attendees with high B12	24%	35%	27%	40%	25%

Haemoglobin

- Fatigue
- Dizziness
- Breathlessness
- Chest pain
- Pallor
- Pica
- Brittle, spoon-shaped nails
- Inability to maintain body temperature

Attention in vegetarian and vegan patients

- ➤ Hb levels show declining trend over time, with worst levels at 24 months.
- Except OAGB which showed low levels 6 Months as well (p=0.05, May be a type 2 error).

	Post-operative Biochemistry Monitoring Period				
					24
Total Bariatric surgeries, n = 222	3 months	6 months	12 months	18 months	months
OAGB Patients, n=83 (37.4%)					
Number of patients with low Hb	4	8	6	5	5
Lowest Hb found per period	102	74	89	80	61
Blood tests attended per period	29 (35%)	25 (30%)	46 (55%)	38 (46%)	21 (25%)
% of attendees with low Hb	14%	32%	13%	13%	29%
SG Patients, n=83 (37.4%)					
Number of patients with low Hb	5	5	2	4	2
Lowest Hgb found per period	104	99	91	87	87
Blood test attended per period	42 (50.%)	45 (54%)	45 (54%)	31 (37%)	8(10%)
% of attendees with low Hb	11%	11%	4%	13%	25%
RYGB Patients, n=56 (25.2%)					
Number of patients with low Hb	2	2	1	2	3
Lowest Hgb found per period	107	104	103	102	91
Blood tests attended per period	39 (70%)	32 (57%)	17 (30%)	17 (30%)	13 (23%)
% of attendees with low Hb	5%	6%	6%	12%	23%

BIOMEMISTRY MONITORING WOLDWIDE

Nutrient marker	Post-operative at 6 months	Annual*
Iron studies	RYGB 6–12 months AGB, SG optional at 6 months	RYGB, and optional AGB, SG
Vitamin B12 (methylmaloni c acid optional)	At 3–6 months if supplemented (AGB, SG, RYGB)	AGB, SG, RYGB
Folic acid (RBC folate, homocysteine)	RYGB 6–12 months AGB, optional SG at 6 months	RYGB, and optional AGB, SG
25-vitamin D	Optional	AGB, SG, RYGB
Vitamin A	RYGB	RYGB every 6–12 months
Vitamin E	Optional	Optional
Zinc	Optional	Optional
Thiamine	Persistent vomiting (SG, RYGB)	Persistent vomiting (SG, RYGB)
Parathyroid hormone	Optional	Optional
Magnesium	Optional	Optional
Selenium	Optional	RYGB
Copper	Optional	Optional persistent unresolved problems with iron levels

General Important Considerations

- Type of procedure
- Clinical Signs and Symptoms
- Diet recall
- Patient report on adherence to supplementation
- Vegan & vegetarian diet
- History of inflammatory GI disease

CONCLUSION

- Post-operative micronutrient monitoring is important.
- Higher risk of zinc deficiency at 3 months, this trend continues till 12 months for OAGB, 12 months for Sleeve and 18 months after RYGB
- Patients with OAGB may require closer monitoring and consideration of additional zinc supplementation/higher doses
- Hb deficiencies worsen with time, there is room for further study with a larger cohort to further study if there is a difference in OAGB compared to other groups
- We need to consider further research for Copper and B12 supplementation and review current recommendations according to findings

Thank You!

