

Evaluation of Weight Loss after RYGB Through a Classification Based on Weight History

NAPOLI

Authors(a): Kamyla Miranda Strobel; Rodrigo Strobel
Dept. of Bariatric and Metabolic Surgery – HNSG
Curitiba, Brazil

Background

Weight Loss Assessment

- Effectiveness of bariatric surgery
 - Weight Loss
- No consensus regarding the metric used
 - %EWL or %TWL
- Best Metric
 - Allow more accurate comparisons
 - broadest patient weight ranges
 - population characteristics

Ocón et al., Nutr Hosp, 2010 Brethauer et al., Surg Obes Relat Dis, 2015 Grover et al., Obes Surg, 2019

EVALUATION OF WEIGHT LOSS AFTER RYGB THROUGH A CLASSIFICATION BASED ON WEIGHT HISTORY

<u>Kamyla Miranda Strobel</u> – Rodrigo Strobel; Dept. of Bariatric and Metabolic Surgery – HNSG, BR

Background

Proposal of an obesity classification by SBEM and ABESO

- Based on the maximum weight achieved in life
- With the concept that individuals with different weight history can have different outcomes
- Stratification based on diferent obesity grades
- Using the percentage of total weight loss achieved

Objective

Evaluate weight loss in patients 2 years after RYGB

through the application of a new proposal for weight loss assessment

based on the history of maximum weight

EVALUATION OF WEIGHT LOSS AFTER RYGB THROUGH A CLASSIFICATION BASED ON WEIGHT HISTORY

<u>Kamyla Miranda Strobel</u> – Rodrigo Strobel; Dept. of Bariatric and Metabolic Surgery – HNSG, BR

Methods

- Retrospective study
- 513 severe obesity patients who underwent RYGB
- 2012 to 2020

Methods

Proposed Classification

Table 1 Obesity Classification Based on Weight History

	Obesity Grade II	Obesity Grade III	Superobesity	
	BMI >35 - ≤40	BMI >40 - ≤50	BMI >50	
Unchanged	%TWL< 20%	%TWL< 25%	%TWL< 30%	
Reduced	%TWL 20 - ≤25%	%TWL 25 - ≤30%	%TWL 30 - ≤40%	
Controlled	%TWL >25%	%TWL >30%	%TWL >40%	

Results

Pre-op Status

- Female prevalence of 73,5%
 - M:F = 11:33
- Mean age of 37,1 years
 - Range from 16 to 72 years
- Mean BMI of 41.4 kg/m2
 - Range from 35,1 to 79,7 kg/m2

Results

Post-op Status

- Mean %TWL of 37,3%
 - Range from 10,4 to 64,6%
- Mean %EWL of 97,8%
 - Range from 40 to 158%
- Proposed classification showed significant associations with already validated metrics (p<0.001)

Results

Weight Loss Analysis

Fig. 1 Patients Analysis according to the proposed classification.

Results

Weight Loss Analysis

Table 2 Mean %TWL by subgroup

	Classification	N	Mean	SD	SE	
%TWL	Obesity Grade 2	239	33.1	7.09	0.458	
2 years after RYGB	Obesity Grade 3	241	40.8	8.12	0.523	
	Superobesity	33	47.9	8.29	1.444 P<0,001	
One-Way ANOVA Test (Fisher's)						

Conclusion

- Adequate weight loss is an essential predictor in the postoperative period of RYGB
- The classification of obesity based on the maximum weight achieved in the patient's life can help in this assessment.
- It is recommended to carry out randomized clinical trials to demonstrate the maintenance of long-term weight loss, reinforcing the validation of the classification.

Thank You!

Grazie!

Obrigada!

NAPOLI

Authors(a): Kamyla Miranda Strobel; Rodrigo Strobel
Dept. of Bariatric and Metabolic Surgery – HNSG
Curitiba, Brazil