MBS to facilitate Orthopaedic Procedures

IFSO Congress 2024 4-9-2024 Assoc Prof Andrew Hardidge Director, Orthopaedic Surgery Orthopaedic Research Centre @ Austin Health

MBS to facilitate Orthopaedic Procedures

Andrew Hardidge, Orthopaedic Surgeonm, Austin Health, Victoria

✓ I have no potential conflict of interest to report

XXVII IFSO World Congress

Melbourne 2024

Why an Orthopod?

Why we should work together...

But it's much more than this

Obesity has an effect on *every* part of **Orthopaedic Surgery**:

- <u>Requirement</u>
- <u>Timing</u>
- <u>Access</u>
- Performing
- <u>Recovery</u>
- <u>Complications</u>
- <u>Outcomes</u>

But can bariatric surgery facilitate all of these?

<u>Requirement</u> for the Orthopaedic Surgery

The *easiest* operation is *no operation*

So, *can joint surgery be avoided altogether* with bariatric surgery?

We know the rate of Osteoarthritis is higher with obesity ^(1, 2)

But it's *not just the mechanical loading* ⁽²⁾

HEALTH

Requirement for the Orthopaedic Surgery

SESEAPCH CENTRE @AUSTI

Requirement for the Orthopaedic Surgery

As a result:

Obesity leads to <u>5-8 x RR</u> of needing Total Hip Replacement ⁽⁴⁾

And risk of knee OA increases about <u>10% for every 1 increase in BMI</u>⁽⁵⁾

Thankfully, in setting of OA, *bariatric surgery* shown to *improve:*

Radiological changes (6)

Frequency and Intensity of pain ^{(7) (8) (9)}

Function ⁽⁷⁾

Range of Motion ⁽⁷⁾

Requirement for the Orthopaedic Surgery

In fact, many patients *delay or cancel*

their orthopaedic surgery after having bariatric surgery (10) (11)

<u>Requirement</u> for the Orthopaedic Surgery

In fact, many patients *delay or cancel*

their orthopaedic surgery after having bariatric surgery (10) (11)

But the remainder who do not... what about them??

Timing of the Orthopaedic Surgery

Timing of the Orthopaedic Surgery

Presentation for orthopaedic surgery is <u>earlier in obese (12) (13)</u>

<u>Longevity</u> of joint replacements is about area under the curve

RESEARCH CENTRE @AUSTI

PC RESEARCH CENTRE @AUSTI

Timing of the Orthopaedic Surgery

If we can push the patient further along the curve (later), then:

Later technology when they do have surgery (Think robotic surgery, and now AI)

Lower risk of needing a <u>revision</u> (Complication rates 2-4 x primary (14)

Lower risk of *multiple revisions*

Access to the Orthopaedic Surgery

For the obese *patient*.

May require a campus/ hospital with <u>greater supportive services</u> HDU, ICU, CPAP

Access to these services is usually more limited

Access to the Orthopaedic Surgery

Opportunity costs for *<u>other</u> patients*:

Theatre access <u>Surgery takes longer</u>^{(15) (16)} Fewer cases per list

Ward and Bed access <u>Increased Length of stay</u>⁽¹⁶⁾ Poorer access to beds to patients of all craft groups

BMI Thresholds:

Survey of American surgeons Only 13 % did NOT have a cut-off to refuse surgery ⁽¹⁷⁾ Most surgeons choosing 40 BMI or above as their cut-off

But not (officially) common in Australia

Also some of this group would have improved See later⁽¹⁶⁾

Performing the Orthopaedic Surgery

Total Knee Replacement

Technical errors are higher (18,19)

Especially implant malposition

Total Hip Replacement

<u>Medial soft tissue leverage</u> (dislocation)

Performing the Orthopaedic Surgery

All surgeries:

Occupational Health and Safety

Special Operating Tables (or two)

Weight of limbs

Operative Time

Recovery after the Orthopaedic Surgery

<u>Recovery</u> after the Orthopaedic Surgery

Obesity affects:

Length of Stay increased (16) (13)

Number of staff needed to mobilise patient

Less likely to be discharged <u>home</u> (20)

More likely to need inpatient *Rehabilitation*

Other resources and requirements

<u>Complications</u> of the Orthopaedic Surgery

Complications of the Orthopaedic Surgery

<u>Early</u>.

Medial Collateral Ligament injury ⁽²¹⁾ Patellofemoral dislocations ⁽²¹⁾ DVT ⁽²²⁾ Wound Infection ⁽²³⁾ Deep Infections & x RR in Super-obese ⁽²²⁾ But 3.5 x lower in bariatric surgery group ⁽²⁴⁾ Readmissions ^{(25) (13)} Dislocations ⁽²⁶⁾

Late:

Revision rates

4.5 x higher odds ratio in super-obese⁽²²⁾
Higher rate for deep infections ⁽²⁶⁾
But NO difference for mechanical failure or aseptic looseining ⁽²⁶⁾

No difference dislocation and revisions after 1 year ⁽²¹⁾

After *revision surgery* in obese patients ⁽²⁷⁾:

Higher Risk of subsequent: Further revisions Reoperation Reinfection

Worse Pain relief Functional Outcomes

Outcomes of the Orthopaedic Surgery

Outcomes of the Orthopaedic Surgery

Obese patients still have *relative* improvements in PROMs

VAS Pain Score 0 - 10

<u>Outcomes</u> of the Orthopaedic Surgery

PostOp* Hip & Knee n=268

Oxford Hip Score / Oxford Knee Score 0 = Severe Arthritis 47 = Satisfactory Joint Function

VAS Pain Score 0 - 10

Outcomes of the Orthopaedic Surgery

Obese patients still have *relative* improvements in PROMs

Our data is definitely showing this

Evidence supports this (28)

But still not same *absolute* outcome as if BMI was lower

Also

Range of motion of TKR is less ⁽²⁹⁾ Harris Hip Scores lower in super-obese ⁽²²⁾

Obesity has an effect on *every* part of **Orthopaedic Surgery**:

- <u>Requirement</u> for
- Timing of
- <u>Access</u> to
- Performing of
- <u>Recovery</u> from
- <u>Complications</u> from
- Outcomes from

Orthopaedic surgery

But does bariatric surgery improve all of these?

There are a couple of things it <u>might not</u>...

Post-operative <u>blood transfusion</u> ⁽³⁰⁾

Hip dislocations in some papers (31, 32)

Related to nutrition?

But <u>LOTS</u> of things it <u>DOES</u>...

Risk of most post-operative complications (33)

Fewer short-term complications ^{(10), (34)} Pulmonary Emboli ⁽³⁰⁾ Respiratory Complications ⁽³⁰⁾

But <u>LOTS</u> of things it <u>DOES</u>...

Lower Operative Time (35)

Shorter Length of Stay (35)

Lower <u>Re-operations and Revisions</u> ⁽³⁶⁾

Lower <u>Costs</u> ⁽³⁰⁾

Bariatric *before or after* Orthopaedic surgery?

Bariatric *first* is best ^(37, 38, 39)

How much before?

Improvement starts at <u>6 months (37, 39)</u>

Best > 2 years after bariatric surgery ⁽³⁸⁾

Complications Anaesthesia length Torniquet Time Total OR Time

Is it <u>Cost-effective</u> to perform Bariatric surgery before Orthopaedic Surgery?

YES! (40, 41)

Would <u>Orthopaedic Surgeons</u> prefer Bariatric surgery before Orthopaedic Surgery?

YES! (**)

(**) Non RCT-based pure opinion of Andrew Hardidge, but likely correct...

Thank You!

IFSO Congress 2024 4-9-2024 Assoc Prof Andrew Hardidge Director, Orthopaedic Surgery Orthopaedic Research Centre @ Austin Health

<u>References (1)</u>

1. Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377(9783):2115-26.

2. Mellion KM, Grover BT. Obesity, Bariatric Surgery, and Hip/Knee Arthroplasty Outcomes. Surg Clin North Am. 2021;101(2):295-305.

3. Li JS, Tsai TY, Clancy MM, Li G, Lewis CL, Felson DT. Weight loss changed gait kinematics in individuals with obesity and knee pain. Gait Posture. 2019;68:461-5.

4. Flugsrud GB, Nordsletten L, Espehaug B, Havelin LI, Meyer HE. Risk factors for total hip replacement due to primary osteoarthritis: a cohort study in 50,034 persons. Arthritis Rheum. 2002;46(3):675-82.

5. Manninen P, Riihimäki H, Heliövaara M, Mäkelä P. Overweight, gender and knee osteoarthritis. Int J Obes Relat Metab Disord. 1996;20(6):595-7.

6. Abu-Abeid S, Wishnitzer N, Szold A, Liebergall M, Manor O. The influence of surgically-induced weight loss on the knee joint. Obes Surg. 2005;15(10):1437-42.

Groen VA, van de Graaf VA, Scholtes VA, Sprague S, van Wagensveld BA, Poolman RW. Effects of bariatric surgery for knee complaints in (morbidly) obese adult patients: a systematic review. Obes Rev. 2015;16(2):161-70.
 Hooper MM, Stellato TA, Hallowell PT, Seitz BA, Moskowitz RW. Musculoskeletal findings in obese subjects before and after weight loss following bariatric surgery. Int J Obes (Lond). 2007;31(1):114-20.

9. Peltonen M, Lindroos AK, Torgerson JS. Musculoskeletal pain in the obese: a comparison with a general population and long-term changes after conventional and surgical obesity treatment. Pain. 2003;104(3):549-57.

 Dowsey MM, Brown WA, Cochrane A, Burton PR, Liew D, Choong PF. Effect of Bariatric Surgery on Risk of Complications After Total Knee Arthroplasty: A Randomized Clinical Trial. JAMA Netw Open. 2022;5(4):e226722.
 Rishi L, Bhandari M, Kumar R. Can bariatric surgery delay the need for knee replacement in morbidly obese osteoarthritis patients. Journal of Minimal Access Surgery. 2018;14(1).

12. Wall CJ, de Steiger RN, Vertullo CJ, Stoney JD, Graves SE, Lorimer MF, et al. Obesity is associated with an increased risk of undergoing knee replacement in Australia. ANZ J Surg. 2022;92(7-8):1814-9.

HEALTH

<u>References (2)</u>

13. Abdulla I, Mahdavi S, Khong H, Gill R, Powell J, Johnston KD, et al. Does body mass index affect the rate of adverse outcomes in total hip and knee arthroplasty? A retrospective review of a total joint replacement database. Can J Surg. 2020;63(2):E142-e9.

 Mahomed NN, Barrett JA, Katz JN, Phillips CB, Losina E, Lew RA, et al. Rates and outcomes of primary and revision total hip replacement in the United States medicare population. J Bone Joint Surg Am. 2003;85(1):27-32.
 Mekkawy KL, Rodriguez HC, Pannu TS, Rowland RJ, Roche MW, Corces A. Morbidly Obese Patients Undergoing Unicompartmental Knee Arthroplasty Compared to Total Knee Arthroplasty: A Retrospective Case-Controlled Analysis. The Journal of Arthroplasty. 2023;38(12):2510-6.e1.

16. Abbas Z, Hafeez S, Naseem A, Habib Y, Mumtaz H. Effect of body mass index on duration of total knee replacement surgery: A prospective cross sectional study. Ann Med Surg (Lond). 2022;82:104637.

17. Sherman WF, Patel AH, Kale NN, Freiberger CM, Barnes CL, Lee OC. Surgeon Decision-Making for Individuals With Obesity When Indicating Total Joint Arthroplasty. J Arthroplasty. 2021;36(8):2708-15.e1.

18. Järvenpää J, Kettunen J, Kröger H, Miettinen H. Obesity may impair the early outcome of total knee arthroplasty. Scand J Surg. 2010;99(1):45-9.

19. Ritter MA, Davis KE, Meding JB, Pierson JL, Berend ME, Malinzak RA. The effect of alignment and BMI on failure of total knee replacement. J Bone Joint Surg Am. 2011;93(17):1588-96.

20. Abhari S, Rhea EB, Arrington DD, Smith LS, Yakkanti MR, Malkani AL. Is There a Difference in PROMs Between Morbidly Obese Patients and Nonobese Patients Following Primary Total Knee Arthroplasty? Arthroplast Today. 2023;22:101169.

21. Kingsberg JG, Halpern AA, Hill BC. A Bariatric Surgery Primer for Orthopedic Surgeons. Am J Orthop (Belle Mead NJ). 2016;45(1):E1-6.

22. Issa K, Harwin SF, Malkani AL, Bonutti PM, Scillia A, Mont MA. Bariatric Orthopaedics: Total Hip Arthroplasty in Super-Obese Patients (Those with a BMI of ≥50 kg/m2). J Bone Joint Surg Am. 2016;98(3):180-5.

23. Arsoy D, Woodcock JA, Lewallen DG, Trousdale RT. Outcomes and complications following total hip arthroplasty in the super-obese patient, BMI > 50. J Arthroplasty. 2014;29(10):1899-905.

24. Kulkarni A, Jameson SS, James P, Woodcock S, Muller S, Reed MR. Does bariatric surgery prior to lower HEALTH

<u>References (3)</u>

25. Rajgopal R, Martin R, Howard JL, Somerville L, MacDonald SJ, Bourne R. Outcomes and complications of total hip replacement in super-obese patients. Bone Joint J. 2013;95-b(6):758-63.

26. Wagner ER, Kamath AF, Fruth KM, Harmsen WS, Berry DJ. Effect of Body Mass Index on Complications and Reoperations After Total Hip Arthroplasty. JBJS. 2016;98(3).

27. Watts CD, Wagner ER, Houdek MT, Osmon DR, Hanssen AD, Lewallen DG, et al. Morbid Obesity: A Significant Risk Factor for Failure of Two-Stage Revision Total Knee Arthroplasty for Infection. JBJS. 2014;96(18).

28. Bosler AC, Deckard ER, Buller LT, Meneghini RM. Obesity is Associated With Greater Improvement in Patient-Reported Outcomes Following Primary Total Knee Arthroplasty. J Arthroplasty. 2023;38(12):2484-91.

29. Foran JRH, Mont MA, Etienne G, Jones LC, Hungerford DS. The Outcome of Total Knee Arthroplasty in Obese Patients. JBJS. 2004;86(8).

30. Wang Y, Deng Z, Meng J, Dai Q, Chen T, Bao N. Impact of Bariatric Surgery on Inpatient Complication, Cost, and Length of Stay Following Total Hip or Knee Arthroplasty. J Arthroplasty. 2019;34(12):2884-9.e4.

31. Nickel BT, Klement MR, Penrose C, Green CL, Bolognesi MP, Seyler TM. Dislocation rate increases with bariatric surgery before total hip arthroplasty. Hip Int. 2018;28(5):559-65.

32. Ryan SP, Couch CG, Duong SQ, Taunton MJ, Lewallen DG, Berry DJ, et al. Frank Stinchfield Award: Does Bariatric Surgery Prior to Primary Total Hip Arthroplasty Really Improve Outcomes? J Arthroplasty. 2022;37(7s):S386-s90.

33. Murr MM, Streiff WJ, Ndindjock R. A Literature Review and Summary Recommendations of the Impact of Bariatric Surgery on Orthopedic Outcomes. Obes Surg. 2021;31(1):394-400.

34. McLawhorn AS, Levack AE, Lee YY, Ge Y, Do H, Dodwell ER. Bariatric Surgery Improves Outcomes After Lower Extremity Arthroplasty in the Morbidly Obese: A Propensity Score-Matched Analysis of a New York Statewide Database. J Arthroplasty. 2018;33(7):2062-9.e4.

ORCA

35. Nearing EE, 2nd, Santos TM, Topolski MS, Borgert AJ, Kallies KJ, Kothari SN. Benefits of bariatric surgery before elective total joint arthroplasty: is there a role for weight loss optimization? Surg Obes Relat Dis. 2017;13(3):457-62.

References (4)

36. Watts CD, Martin JR, Houdek MT, Abdel MP, Lewallen DG, Taunton MJ. Prior bariatric surgery may decrease the rate of re-operation and revision following total hip arthroplasty. Bone Joint J. 2016;98-b(9):1180-4.

37. Liu J, Zhong H, Poeran J, Sculco PK, Kim DH, Memtsoudis SG. Bariatric surgery and total knee/hip arthroplasty: an analysis of the impact of sequence and timing on outcomes. Reg Anesth Pain Med. 2021;46(11):941-5.

38. Severson EP, Singh JA, Browne JA, Trousdale RT, Sarr MG, Lewallen DG. Total knee arthroplasty in morbidly obese patients treated with bariatric surgery: a comparative study. J Arthroplasty. 2012;27(9):1696-700.

39. Bains SS, Sax OC, Chen Z, Nabet A, Nace J, Delanois RE. Bariatric surgery prior to total hip arthroplasty: does timing or type matter? Hip Int. 2023;33(6):1017-25.

40. McLawhorn AS, Southren D, Wang YC, Marx RG, Dodwell ER. Cost-Effectiveness of Bariatric Surgery Prior to Total Knee Arthroplasty in the Morbidly Obese: A Computer Model-Based Evaluation. J Bone Joint Surg Am. 2016;98(2):e6.

41. Premkumar A, Lebrun DG, Sidharthan S, Penny CL, Dodwell ER, McLawhorn AS, et al. Bariatric Surgery Prior to Total Hip Arthroplasty Is Cost-Effective in Morbidly Obese Patients. J Arthroplasty. 2020;35(7):1766-75.e3.

